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Generally, the bottom-up learning approaches, such
as neural-network, to obtain the optimal controller of
target task for mechanical system face a problem in-
cluding huge number of trials, which require much
time and give stress against the hardware. To avoid
such problems, a simulator is often built and per-
formed with a learning method. However, there are
also problems that how simulator is constructed and
how accurate it performs. In this paper, we are con-
sidering a construction of simulator directly from the
real hardware. Afterward a constructed simulator is
used for learning target task and the obtained opti-
mal controller is applied to the real hardware. As
an example, we picked up the pendulum swing-up
task which was a typical nonlinear control problem.
The construction of a simulator is performed by back-
propagation method with neural-network and the op-
timal controller is obtained by reinforcement learn-
ing method. Both processes are implemented with-
out using the real hardware after the data sampling,
therefore, load against the hardware gets sufficiently
smaller, and the objective controller can be obtained
faster than using only the hardware. And we con-
sider that our proposed method can be a basic learning
strategy to obtain the optimal controller of mechanical
systems.

Keywords: simulator building, reinforcement learning,
neural network, swing-up pendulum

1. Introduction

Recently, many kinds of machine control methods for
the nonlinear systems have been proposed. The most of
machine learning methods for the complicated mechani-
cal systems utilize the bottom-up approaches to search the
optimum controller, such as genetic algorithm and neu-
ral networks, and they work very effectively [7, 9, 10].
However such approaches require a lot of trials for op-
timization, therefore, they are evaluated with a simulator.
Since when they are implemented as the real system, the
machinery must be put a harsh strain and continuously
stressed, and may break down particularly on parts of pre-

cision mechanics, while a simulator never includes such
issues. Furthermore, we have another advantage to use
the simulator instead of real hardware such that the sim-
ulator can be run and optimized faster than using the real
hardware which allows us to make it perform many trails.
Thus, a simulator is considered as a powerful and useful
tool for the methods which are not directly applicable for
the real hardware. On the other hand, we face a prob-
lem in constructing a simulator which emulates the real
hardware in high fidelity. The simulator construction is
very difficult particularly for the system of which behav-
iors cannot be clearly and preliminarily known or may be
unpredictably changed by some reasons, such as replace-
ment of components or environment transition. Therefore
a simulator should be always built and updated according
to the actual system behavior simultaneously with opti-
mization of the controller.

Many researches with a sort of pendulum have been
studied and reported in the field of the nonlinear machine
control. Doya [7] and Iguchi et al. [9] dealt with a swing-
up pendulum problem. They used a kinematics model to
perform and evaluate their proposed methods. However,
they never applied them to the real system. Therefore,
the effectiveness of the method is not guaranteed in the
real system because their model may have the gap with
the reality. Astrom et al. [6] and Yoshida [5] controlled
the pendulums by the techniques based on the mechani-
cal energy of the system, and applied them to the stabi-
lizing problem of a pendulum on a cart. The simulators
they employed were ideally built according to the physi-
cal law, and calculated the kinematics energy. However it
cannot be always assumed that such inner physical pa-
rameters are given in any systems. Xi et al. [4] dealt
with the swing-up problem called Furuta pendulum and
applied their method to the real hardware system. They
measured the physical properties with high accuracy, such
as the length, mass and friction coefficients, of which val-
ues are critical for application to the real system, hence,
their method works well with the real system. However,
when the properties change because of aging deterioration
or replacement of the components, they must be measured
again or newly. Thus, such methods are very useful and
effective just only on a temporary basis. Therefore, in or-
der to make the system always work well in any cases, a
simulator should be directly built and updated according
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to the real hardware behavior and the objective controller
should be obtained by suitable method with the updated
simulator.

In this paper, we describe a novel method of machine
learning using both a simulator and a real hardware, and
apply it to the swing-up pendulum problem. A simulator
of the hardware is directly built by learning the relation-
ship between acquired input and output real data of the
hardware and it performs with the neural-networks and
the back-propagation learning method without any infor-
mation of kinematics model. Herewith, we do not have
to consider an arduous simulator modeling with physical
law. Afterward the objective controller of the hardware is
trained only with the built simulator by the reinforcement
learning method. Finally, the optimum controller is ap-
plied to the real hardware and evaluated. Thus the process
to obtain the optimal controller is executed through hybrid
types of platform, hardware and its simulator. Therefore,
even if the hardware constitution is changed, it can be pos-
sible that the optimal controller for hardware is updated
according to the update of simulator.

2. Learning Strategy

2.1. Swing-Up Pendulum Problem
To swing up pendulum with a limited torque |τ| ≤ τmax,

is a typical nonlinear control problem. Fig. 1 shows the
swing-up pendulum model which we use in this paper.
The pendulum is controlled only by torque generated at
the rotational axis, and the controller can observe the an-
gle and speed values of the pendulum. Because of its lim-
ited torque, the pendulum cannot be swung up from the
most inferior position (initial position) with one push, and
therefore, the controller has to swing the pendulum sev-
eral times to gain enough mechanical energy to get up to
the top position. Our final goal is to build the controller
which can learn and control the sequential behavior of the
pendulum from the initial position to the inverted standing
state.

2.2. Simulator Building
In our previous work [1], we built a simulator of the

pendulum from the real hardware using a genetic algo-
rithm (GA). In this approach, we formulated a physical
model of the pendulum according to the Euler-Lagrange
differential equation, and the coefficients of the equation
are optimized by GA. As a result, the simulator performed
very efficiently when the pendulum was acting in fast
speed state. However, as the speed of the pendulum mo-
tion became slower, the precision of the simulator was
gradually getting worse. The reason was that the formula-
tion did not describe the static and dynamic friction effect
at once. That is to say that the formulation of the real pen-
dulum behavior could not exactly match to the physical
model. And it is too complex to express the analytical for-
mulation. In this paper, to solve this issue, we discard an
application of the differential equation based on the phys-
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Fig. 1. Swing-up pendulum. Fig. 2. Real hardware.
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Fig. 3. Setup of pendulum system.

ical model. Alternatively, we employ the neural-network
(NN), which is superior to approximate even nonlinear
functions, and the NN directly estimates and outputs the
next state from the current state. The details of the learn-
ing using the NN are described in section 4.

2.3. Learning of Swinging-Up Behavior
As mentioned above, the swinging-up behavior process

is not simple, because of its limited torque. It means that
the controller of the pendulum must learn the sequential
process in the correct order to achieve the objective state.
Therefore, the controller takes a lot of trials and explo-
rations to learn it. When using a real hardware, it may
need a huge number of trials, and may break down. Thus
using a real hardware for learning is clearly exceptional,
while using a simulator is very effective because it makes
the controller learn faster time than real time without ac-
tual degradation. In this paper, the process of swinging-up
behavior learning is performed only with the built simula-
tor introducing the reinforcement learning. These details
are described in section 5.

3. Real Hardware Construction

Figure 2 shows the overview of the swing-up pendu-
lum and Fig. 3 illustrates the setup of the real pendulum
system used in this paper. The pendulum is directly at-
tached to the axis of the geared DC-motor and its behav-
ior is controlled only by the generated torque at the motor
axis. The Motor-Driver, which can supply the current to
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the motor by the Pulse Width Modulation (PWM) control,
generates the torque τ according to the analog signal com-
mand from the D/A board inserted into the PC. The torque
τ at the rotational axis is generated as be proportional to
an analog signal voltage by the Motor-Driver. Therefore,
the maximal torque τmax can be configured with the output
limit voltage Vmax of the D/A board which is not enough
to swing-up the pendulum to the inverted state by just one
force application.

At the back of the DC-motor, the pulse encoder is as-
sembled. This is a device which generates some number
of pulses corresponding to the moved angle value, and
then the pulses are sent to the counter-board inserted into
the PC. By taking count of the pulses, the system can ob-
tain the position angle θ and calculate the rotational speed
ω of the pendulum.

In this setup environment, the state of the real pendu-
lum is measured and the behavior is controlled. The pen-
dulum swing-up behavior is optimized for this hardware.

4. Simulator Building

The precision of a simulator is very important, since it
affects the accuracy of the real hardware swing-up behav-
ior which is obtained by the built simulator. Though it
performs successfully in the simulation, the real hardware
does not always perform successfully. In this section, we
describe how to build a simulator using the neural net-
work, and how the simulator performs.

4.1. Simulator with Neural Network
The neural-network (NN) is known as an information

processing paradigm that is inspired by the biological
nervous systems such as the animal’s brain. Especially
the Multi-Layered Perceptron (MLP) trained with back-
propagation algorithm is effective for the approximation
of a nonlinear function.

In our case, the MLP consists of three layers, i.e. input,
hidden and output layer. The MLP is input three param-
eters, angle θ and speed ω that express the state of the
pendulum, and command voltage V for the Motor-Driver
from the D/A board, instead of torque τ . Then it outputs
the difference values of the pendulum state parameters,
Δθ and Δω during time Δt. It means that, the MLP trans-
late from a data set (θ ,ω,V ) at time t, to the data set of
(Δθ ,Δω) in Δt later.

4.2. Simulator Performance
Each neuron in the output layer is a nonlinear unit ex-

pressed with the arctangent sigmoid function whose out-
put is limited in [−1,1]. Therefore, the output value Δθ
and Δω should be normalized also to [−1,1]. The an-
gle parameter θ is already limited in [−π,+π], then its
normalization means dividing by π . However the speed
parameter ω is not limited. Therefore we suppose the
maximum value ωmax and the speed ω is normalized from
[−ωmax,+ωmax] to [−1,1].
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Fig. 4. Pendulum simulator with MLP.

A simulator has the MLP network inside. In the run-
ning process of the simulator, it follows the MLP. The
simulator inputs the state (θ ,ω,V ) at time t, and obtains
the normalized difference values in [−1,1]× [−1,1] as an
output signal from the MLP. The de-normalized values
(Δθ ,Δω) is added to (θ ,ω), then the state at time t +Δt is
simply represented as the state s(θ +Δθ ,ω +Δω). Fig. 4
illustrates the overview of running process of the simula-
tor with the MLP.

In this way, the simulator simulates the total system
including the electric circuit to manage the hardware.
Therefore we do not have to take care of the mechanism of
the real hardware, and just have to concentrate its control
only with the interface of the simulator.

5. Swing Up Learning

After building a simulator, the controller for the swing-
up behavior is learned and obtained only with the simula-
tor. The controller has to swing the pendulum a few times
in a correct procedure forward the final goal, i.e. the in-
verted standing state. In this section, we explain details
about a learning method of swing-up behavior using the
reinforcement learning techniques.

5.1. Reinforcement Learning
We focus on the reinforcement learning [2] to obtain

the ability to swing up behavior of the pendulum. In
the reinforcement learning, the action is evaluated by the
given rewards, and the system empirically learns the opti-
mum action by trials and errors. Therefore, the reinforce-
ment learning is very robust and effective in uncertain en-
vironment, comparing with the conventional supervised
learning method, such as the NN and the GA methods. In
this paper, we employ the actor-critic architecture method
[3] for the reinforcement learning, which is useful to out-
put the continuous action. This architecture is composed
of two modules called actor and critic. The actor module
generates the action according to each state of environ-
ment, and the critic evaluates value of each state of envi-
ronment and holds them. In our case, the action and state
of the reinforcement learning correspond to the command
voltage V and the pendulum state s(θ ,ω), respectively.
The rewards are given only at the inverted standing state
s(|θ | ≈ π,ω ≈ 0).
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Fig. 5. Result of simulator building learning.

5.2. Update Rule
The actor module possesses the Gaussian functions for

each state s(θ ,ω). This Gaussian function expresses a
probability density function for mapping the state s(θ ,ω)
onto the action a(V ), which is described as P(a|s). This
function has two parameters to be defined, average V̄ and
standard deviation σ . The update of the parameters is
performed only when the actor module receives the re-
inforcement signal from the critic module. In this time,
update follows as the below rule:

V̄ ← V̄ +α(V − V̄ ) . . . . . . . . . . . (1)

σ ←
{

β ·σ |V − V̄ | ≤ σ
β−1 ·σ otherwise . . . . . . (2)

where α and β are learning ratio and update ratio of stan-
dard deviation. This update rule means that the actor tends
to output the act a(V) which can get more reward here-
after.

The critic module possesses the evaluation value E(s)
for each state s(θ ,ω) by given rewards. The update is per-
formed by the following the TD-error method. Its update
rule is described as

E(st)← E(st)+α[rt+1 + γE(st+1)−E(st)] . (3)

where α and γ are learning ratio and discount ratio, re-
spectively. st and rt indicates the state and the given re-
ward at time t. When the evaluation value E(s) is increas-
ing on the update process, the reinforcement signal is sent
to the actor module. In this update rule, the evaluation
value E(s) for each state s approaches the true evaluation
value Eπ(s). In this way, the controller of the pendulum
explores the optimum action for each state s to perform a
swing-up behavior.

6. Experiments and Results

6.1. Simulator Building
The target data to train a simulator was acquired from

the real pendulum. At first, we configured the maximal
torque command voltage Vmax as 1.0 volts, with which the
pendulum could be lifted up to the angle around 36◦. We
changed the torque command voltage V which was sent
to the Motor-Driver from −1.0 to +1.0 volts in 0.2 volt
interval, and gave the acceleration by the external force
with a human’s hand for each voltage. Then we acquired
the sequential sample data of state (θ ,ω,V ) with sam-

Fig. 6. Trajectories in phase space.

Fig. 7. Result of evaluation value in parameter space.

pling interval Δt = 0.01 sec. However, the acquired data
were not sampled exactly in the same interval Δt, because
the acquisition operation was not performed in the correct
time because of the multi-task operation system of the PC.
Therefore we re-sampled the acquired data in the correct
interval by the spline interpolation method of 3rd-ordered
polynomials and obtained new sequential data which was
sampled exactly in interval Δt. They were used as the
target data to train the simulator. In addition, the speed
value was obtained from the differential value of the cor-
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Fig. 8. Result of swing-up behavior learning with simulator.

Fig. 9. Result of swing-up behavior with real system.

responding spline curve.
The learning of the NN was performed by the back-

propagation method. The numbers of neurons in the input,
hidden and output layer we used were 3, 10 and 2, and a
target sample data set: (θ ,ω,V ) and (Δθ ,Δω), were ran-
domly selected from the re-sampled sequential data. A
parameter ωmax used for normalization of speed was set
to 15.0 rad/sec which was given at the bottom position
by the freely dropped pendulum from the top position.
Learning ratio was set to 0.02, and nonlinearity ratio of
nonlinear neurons in the MLP was set to 1.0. The number
of iterations of the learning was 4 millions.

Figure 5 shows the mean squared error (MSE) of MLP
every one thousand learning operations. The MSE value
decreased until around 1.0×10−6. This means that the ac-
curacy of learning was about 0.1% in normalized space.
Fig. 6 shows the trajectories in the phase space with a
variable torque voltage. The overview shape of the tra-
jectories and the convergent angles are similar to the real
pendulum in any cases, while the density of the trajectory
in the case of lower torque is less in fidelity. The reason is
that the NN is only evaluated with the differential values
(Δθ ,Δω). Therefore, the error is gradually accumulated
and the trajectories went away from the true trajectory of
the real pendulum. However, the trajectories represent the
movements of the pendulum well in any voltage.

6.2. Learning Swing-Up Behavior

The swing-up behavior learning was performed with
the obtained simulator in the previous section. The state
parameter space [−π,+π]× [−ωmax,+ωmax] is divided in
20× 20 at even intervals and treated as a discrete space.
When the torque command voltage V the actor outputs
is more than Vmax, it is set that V = Vmax as saturation.
If the state of the pendulum goes out of the parameter
space, i.e. |ω|> ωmax, we reset both the angle and speed
to 0. Such operation can be executed only in the simu-
lation environment, though it is impossible with the real
hardware. The reinforcement learning performed accord-
ing to the actor-critic update rule with interval 0.1 sec-
onds for 100 hours in the simulator world. The parame-
ters α , β and γ , used for the update by the formula (1)
and (2), are set to 0.1, 0.9, and 0.9, respectively, they
were determined by some preliminary experiments. The
rewards are given only when the pendulum is in the state
s(|θ |> 3.0, |ω|< 0.2).

The learning process finished in 4 minutes at most.
Fig. 7 shows the halfway and final resultant evaluation
value in the critic module for each divided parameter
space, where the light color means higher value and dark
one means lower value. As we expected, the highest value
was located around the inverted standing state s(|θ | ≈
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Fig. 10. Result of parameter time-shifts.

π,ω ≈ 0), and the values were high in the state where
the mechanical energy was same as the inverted standing
state. Meanwhile, as the state gets farther from the stand-
ing state, the values are gradually lower. This means that
the controlled pendulum stocks the enough mechanical
energy in advance, and then approaches the goal state. In
the final resultant Fig. 7(b), the under half area has higher
values more than upper one. Therefore the controller fi-
nally recognizes that the crock-wise movement is better to
be close to the goal state, and the inverted state is reached
always from crock-wise direction. Fig. 8 shows the con-
clusive sequential images of the swing-up behavior with
the simulator from the left-top to the right-bottom. They
prove that the learning was performed correctly.

6.3. Application to Real Hardware
Finally, we applied the learning result obtained in the

previous section to the real hardware to control the swing-
up behavior. Fig. 9 shows that the sequential images of
the swing up behavior by the real hardware. It can be seen
that the real pendulum acts almost in the same way as the
simulated result. Fig. 10 shows the time-shift data of the
angle θ , speed ω and torque voltage V of the swing-up
behavior with the real hardware and simulator. The solid
lines indicate the results of the real pendulum system, and
the dashed lines indicates the simulator’s ones. It can be
confirmed that the pendulum was swung a few times, and

after that it kept the inverted standing state. Comparing
with the simulator, the real system performs as to trace it.
This means that the simulator is built with a satisfactory
precision and it has an enough capability to realize the
real pendulum.

7. Conclusion

We proposed a novel method of swing up behavior
learning associating with a real hardware and its simu-
lator. The simulator was constructed by the neural net-
work trained with the actually acquired data from the real
hardware without information of the physical law. The
simulator accuracy was estimated with MSE value and
it was effectively getting small. Therefore the simulator
could cross the gap with the real hardware. Afterward,
the swing-up control for the real hardware is learned only
through the built simulator by the reinforcement learning
method. By using the simulator, the learning could be fin-
ished much faster than using the real pendulum without
stress. Moreover, we confirmed that, by implementation
of the optimum controller obtained from simulator for the
real pendulum, the real pendulum swung a few times and
finally reached to the inverted standing state.

For future works, we are considering the hybrid strat-
egy using both the real hardware and the simulator for the
robot learning. In this paper, we regard that the physical
parameters of the real pendulum, such as a friction co-
efficient, a mass of pendulum and the gravitational con-
stant, are never changed in the environment. Therefore,
if they change by the aged deterioration or some physi-
cal accidents, the results of learning should be discarded
and the system learns again from the first. However, if the
simulator always observes the real pendulum movements
and learns the relationship between acts and its results
even during the system is executing the objective tasks,
the system can search the optimal controller for objective
behaviors with the simulator again. This cycle can make
the system flexible against the changing and unpredictable
environment.
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