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Body Definition Based on Visuomotor Correlation

Ryo Saegusa, Member, IEEE, Giorgio Metta, and Giulio Sandini

Abstract—This work proposes a plausible approach for a
humanoid robot to define its own body based on visuomotor
correlation. The high correlation of motion between vision and
proprioception informs the robot that a visually moving object is
related to the motor function of its own body. When the robot finds
a motor-correlated object during motor exploration, visuomotor
cues such as body posture and the visual features of the object are
stored in visuomotor memory. Then, the robot developmentally
defines its own body without prior knowledge on body appear-
ances and kinematics. Body definition is also adaptable for an
extended body such as a tool that the robot is grasping. The
body movements are generated in the manner of stochastic motor
babbling, whereas visuomotor memory biases the babbling to keep
the body parts in sight. This ego-attracted bias helps the robot
explore the joint space more efficiently. After motor exploration,
visuomotor memory allows the robot to anticipate a visual image
of its own body from a motor command. The proposed approach
was experimentally evaluated with humanoid robot iCub.

Index Terms—Body perception, visuomotor coordination.

I. INTRODUCTION

OW can a robot know its own body? This is a funda-

mental question for embodied intelligence and also the
early life of primates. We are able to recognize our body under
various conditions; for instance, we naturally perceive our own
hands with gloves on. In this sense, it would be reasonable to
assume that some parts of our body perception are acquired
developmentally through sensorimotor experiences. Our main
interest in this work is to realize a primatelike cognitive system
for perceiving own body developmentally. The function of body
perception is considered essential for robots to identify their
selves when interacting with people and objects. In addition, it
allows perceiving an extended body when using a tool.

An overview of the proposed approach is depicted in Fig. 1.
The principal idea is to simply move the body and monitor the
correlation of visual and proprioceptive feedback. Then, the
robot defines motor-correlated objects as its own body. When
the correlation is high, visual cues of the attractive region are
stored in visuomotor memory with the proprioceptive informa-
tion. Since the visual movement and the physical movement of
the body parts are assumed dependent, the level of correlation
helps the robot distinguish its own body from other objects.
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Fig. 1. Body definition system. A robot generates arm movements and senses

visual and proprioceptive feedback. When the feedback is correlated, the robot
defines the moving object as its own body part and memorizes the related
visuomotor information. Through motor exploration, the robot obtains the
ability to anticipate visual images of its own body.

This correlation is also useful in anticipating the appearance
and location of the body in sight.

This paper is organized as follows: Section II describes
related works on body perception in neuroscience and robotics.
Section III describes the proposed framework and details of
the component processes. Section IV describes experimental
results with the humanoid robot iCub. Section V discusses a
search problem in body definition. Section VI concludes the
work and outlines some future tasks.

II. RELATED WORK

Iriki et al. found bimodal neurons (somatosensory and
visual neurons) in the intraparietal cortex of monkeys, which
incorporated a tool into a mental image of the hand [1]. This
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Fig. 2. (a) Visual receptive field of the bimodal neurons (left: before tool
use, right: after tool use). The monkey perceives a tool as an extended body
part [1]. (b) Video-guided manipulation. After training, the monkey correctly
recognizes the hands projected on the monitor as its own hands [2]. The figures
were reproduced from [4] under permission.

group of the neurons responds to stimuli from both the visual
receptive field and the somatosensory receptive field. After
use of the tool, the visual receptive field of these neurons is
extended to include the tool [Fig. 2(a)]. More recently, in [2],
they trained a monkey to recognize the image of its hands in a
video monitor and demonstrated that the visual receptive field
of these bimodal neurons was projected onto the video screen
[Fig. 2(b)]. Experimental results suggested that the coincidence
of the movement between the real hand and the video-image
of the hand seemed essential for the monkey to use the video-
image for guiding its hands. It is known that this type of
manipulative actions is mirrored with the observed similar
actions in the premotor cortex of monkeys [3].

In robotics, sensorimotor coordination is well studied, in-
volving neuroscientific aspects and developmental psychology
such as sensorimotor prediction [5], [6], mirror systems [7],
action—perception links [8], and imitation learning [9], [10].
However, body perception was hand coded with predefined
rules on body appearances or body kinematics such as visual
markers and the joint-link structure. This kind of prior knowl-
edge gives robustness for body perception but imposes certain
limits as well. For instance, it would be difficult for the robot to
adapt body perception to the physically extended hand.

Recently, Stoytchev proposed video-guided robot reaching
[11], which successfully simulated similar tasks for monkeys
in [2]. However, some practical limits still remain, e.g., move-
ments of the robot were constrained on a plane and object
identification was neglected by using colored markers. The time
delay of temporal contingency between the motor command
and the visual movement must be calibrated in advance, which
means that the system or the experimenter needs to know what
the robot hand is.

Hikita et al. proposed a bimodal (visual and somatosensory)
representation of an end effector based on Hebbian learning
[12], which simulated the experiments with monkeys in [1].
The visual saliency system based on [13] allowed general object
detection. However, the approach was evaluated only with a
simulator. Then, it is not clear how much visual disturbance
and sensorimotor noise interfere in body perception.

Kemp et al. approached robot hand discovery by utilizing
mutual information between the arm location in joint space
and the visual location of the attracted object in sight [14].
The proposed method functioned successfully, even though the
robot was interacting with a person; however, it did not consider
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a head movement, which could interfere in motion-based object
perception and push the arm out of sight.

Some other methods focus on temporal dependency rather
than spatial dependency [15], [16]. The work of Natale et al.
[16] was based on image differentiation using periodic (e.g.,
sinusoidal) hand movements, the frequency of which is a robust
cue to match the movement of the hand and the visually
detected object.

Compared to previous studies, our method can be a tolerant
approach toward dynamic change in camera configuration. It
does not require prior knowledge such as body appearances,
kinematics, dynamics, or motor patterns. It rather requires
mobility and cross-sensory modality. Moreover, we introduce
ego-attracted body exploration and body anticipation. Efficient
motor exploration and sensory anticipation obtain more impor-
tant topics in motor learning [17]-[19].

Body information is fundamental to identifying the end
effector of robots, particularly when working in visually-guided
manipulation [20] with learning mechanisms [21], [22]. For
manipulation tasks in a fixed location, the use of visual mark-
ers gives an advantage for reliable hand—eye calibration [23],
whereas we focus, rather, on adaptability in a dynamic situation,
where the body is supposed to be modified by grasping a tool.
Modern techniques of visual motion analysis [24], [25] can be
incorporated to improve our body definition paradigm.

The ability for body perception is still important for the
safety of robots, even if the effector position is given by
kinematics. The body perception system allows adaptability
for body modification such as coating and exchange of the
end effector. It can contribute to tele-operated manipulation
[26], [27] and adaptive manipulation [28], [29] in terms of
verification of the operator’s control and self-diagnosis of motor
functions.

III. METHOD

The body definition system is outlined in Fig. 3. The system
is composed of vision, proprioception, motor generation, visuo-
motor coordination, and visuomotor memory. Each function is
detailed in the succeeding sections. The proposed system is an
extension of the system in [30].

A. Vision

Visual processing is modularized as a set of cascaded image
filters, which function in parallel to allow real-time image
processing. All modules are dually structured for binocular
video streams from the left- and right-eye cameras, but, for
body definition, the system uses the monocular video stream
from the left-eye camera.

The procedure of image processing is illustrated in Fig. 4.
First, a visually salient point is detected; then, a visual blob is
extracted from the input image. The salient point is traced as a
short-term sequence; then, the profiles of the position and the
velocity are given.

In the previous study, visual saliency was modeled as an
optical difference between the center and surrounding regions
in terms of shape and color cues [13]. In the proposed system,
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Fig. 4. Visual processing. The saliency module detects a salient point based
on a motion cue; then, the blob perception module grabs a visual blob by the
log-polar transformation.

we focus on the motion cue. The saliency module produces a
gray scale image I,(X, ¢) from the input color image by aver-
aging the RGB components. X = (x,y) and ¢ denote the image
coordinates and frame time, respectively. Frame subtraction is
applied between I, (X, t) and the previous frame I, (X, ¢t — At)
as follows:

If(X’ t) = ‘I.(](X> t)

— Iy(X,t = At)] (1
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where I;(X,t) denotes the intensity of the subtraction frame.
When the optical mass > I;(X,t) is enough, the center
of mass is regarded as the salient point. The coordinates are
given by

Xs(t) =

ZIth

Otherwise, the previous point X, (t — At) is given as X(t).
Moving velocity V, is the norm of the velocity vector
defined as

> (XX, 1)

X

2)

3)

where the upper dot denotes the temporal differential of the
variable. In the following formulation, we use the term velocity
to indicate the norm of the velocity vector.

A moving blob is extracted based on the salient point.
The local region around the salient point is extracted; then,
a visual blob is segmented from the region. A color image
I(x,y) presented in a Cartesian image coordinate system (z, y)
is transformed into the log-polar coordinate system (&,6)
such as

E=Iny/a?+y? 4)
0 = arctan(y/x) 3)

where the origin of the Cartesian coordinate system (z,y) is at
the center of the image.

The log-polar transformation allows the system to segment a
blob, as illustrated in Fig. 4(b). On the log-polar image, each
horizontal line at # is segmented into two domains, as shown
in Fig. 4(c’). We defined the segment border as the curve to
minimize the segmentation error on the log-polar image. On
each horizontal line at 6, the position of the segmentation point
&s(0) is given by the following equations:

&5(0) = arg Héi/nE(é“’,G) (6)

=" {1(6.6) - B(£.6;€)) )
13

where E(¢', 0) denotes the segmentation error when segmented
by the point &’ on the horizontal line at 6. B(&, 0; £’) denotes the
binary function on the line, which has two values corresponding
to the left (£ < ¢&') and right domains (£’ < &), respectively.
The value of each domain is the average level in the domain
in Fig. 4(c’). The curve drawn by £,(f) are smoothed by local
averaging and then exploited to segment the blob. The extracted
blob image is denoted as the motor-correlated image I in
Fig. 4(d).

Some examples of the blob perception are shown in Fig. 5.
The segmentation is applied to each color channel of R, G,
B, and Y and also to intensity channel I. The value of each
channel is given by R=r—(g+b)/2, G=g— (b+71)/2,
B=b—(r+g)/2,Y=(r+g)/2—|r—g|/2—0b,and [ =
(r+g+0b)/3, where r, g, and b denote the color components
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Fig. 5. Blob perception. R, G1, By, and Y are the input images, including
an object with the particular color of red, blue, green, and yellow, respectively.
Ra, Gg, Ba, and Y2 are segmented images based on the corresponding color
channel. I is also an input image but without the particular color. I3 is the
segmented image based on the intensity. I3 and I4 are the log-polar images of
I; and its segmentation, respectively.

Fig. 6. Body structure of the robot platform iCub [31]. The eye, head, and left
arm of the robot were used in the experiments.

of the standard RGB image format. The channel with minimum
segmentation error is applied for blob segmentation. Therefore,
if the object has a particular color in R, G, B, or Y, it is seg-
mented by this color channel. Otherwise, the intensity channel
is applied.

B. Proprioception

The proprioceptive function is based on the humanoid robot
platform depicted in Fig. 6 [31]. The figure draws the partial
joint configuration of the body that we mainly used. In the
proposed approach, we do not suppose prior knowledge of the
body structure such as kinematics and dynamics. The system
is aware of neither the number of the joints nor the body
appearances. We assume only the identity of joint groups to
distinguish the head joints from the arm joints.

In biological systems, proprioceptive sensing includes many
sensory modalities such as tactile, heat, pain, and force sensing.
Here, we only employ joint angles and velocities given by the
joint encoders. The groups of the head and arm joint angles are
denoted as g, and q,, respectively. In the following description,
we also use ¢,, which indicates either joint group (p = a or h).
The velocity of the joints is denoted as

Va(t) = lgp(8)] - (8)
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C. Motor Generation

The motor behavior of the robot is produced by biased motor
babbling [32]. Motor babbling, which gives random movements
of joints, is useful for the robot to explore the learning domain
without a structured motor control.

The head posture was stationary in the previous studies,
whereas we challenge body definition under natural condi-
tions including head movements. The key idea in enhancing
efficiency in body search is to bias the randomness of motor
babbling in the search domain. The low-level module, which
is denoted as the motor generation module, produces a veloc-
ity motor command from the position motor commands. We
adopted a simple proportional—integral differential control as
formulated in the following:

(jpc(t) = er (q;7 dp; t)

t
+ K Y e(apapT)
T=t-T,
+ Kd {6 ((I;aqznt)_e (q;aq;lht_At)}

€ (q]CN 4p> t) = qzc)(t) _ql)(t)

where ¢,“ denotes the velocity motor command for the robot.
e(qp, 4p,t) denotes the position error of the joint angle at time ¢.
K,, K;, and K4 denote the constant weight for the proportional,
integral, and differential factors. Note that g, is given by the
Joint encoder, whereas the position motor command g;, is given
by the middle-level module denoted as the motor intention
module.

The motor intention module randomly generates motor com-
mands from the normal distribution, the density function of
which is defined as follows:

(C))
(10)

Prob (¢5) = N (g}, 0}) (11)

where the mean q; and the deviation O’; are given by the
body attraction module. The arm attraction module gives an
arm motor intention coordinated with a head posture. Then,
the lower motor module produces a motor command, which
functions to move its arm in sight. The details of the body
attraction are described in Section III-E.

D. Visuomotor Coordination

The all-sensor data from the eye, head, and arm are co-
ordinated in the visuomotor modules. At every moment, the
correlation between the velocity of a moving blob and the ve-
locity of the arm proprioception is monitored. The visuomotor
correlation is defined as

> rmer, VI()Va(7)

C(t) = (12)
Vg VIR S, g, Vi)
V=Vt - 2 DD Vi) (13)
VIt =Valt) - = S Va(r) (14)

¢ T=t—T,
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where T, denotes the size of the sequence. V and V| denote
the biased values of V; and V,, by subtracting the average value
of each sequence, respectively. C(t) satisfies the formula on the
lower and upper boundaries such that —1 < C(t) < 1.

We define the visuomotor memory as the set of vari-
ables {X, I," ¢, V" [ qa"? , V4’ }j=1,...n,. The visuo-
motor information is memorized when the visuomotor
correlation exceeds a certain threshold. When the capacity of
the visuomotor memory reaches the limit /V;, the system forgets
the oldest memory and memorizes the new one. Exception-
ally, when the head is moving, the visuomotor information is
neglected since the visual motion is not reliable.

E. Visuomotor Memory

Visuomotor memory is useful in enhancing body search by
directing motor exploration. Here, we introduce the concept of
body attraction. Body attraction is simply realized by recalling
an arm position from the acquired visuomotor memory. The ro-
bot refers to the visuomotor memory and finds the closest head
position to the current motor command of the head position
q;,- Then, the robot recalls the arm position coupled with the
closest head position in the memory and moves the arm toward
this position. Since the visuomotor information was memorized
when the robot found the motor-correlated object (in most of
cases it is the own arm), this association leads the arm into the
view field. Note that this motor intention originated only from
visuomotor memory, which is the result of self-generated motor
exploration.

The arm attraction is formulated as follows:

i

Qo =4q " (15)
k = arg mindp,; (16)

J
dnj = |4, — a,” (17)

where qfl denotes the motor intention of the arm, and dj;
denotes the distance between the motor command of the head
position and the jth head position in the visuomotor memory.
This motor intention is given to (11) in order to generate a motor
command of the arm.

The visuomotor memory provides a prediction of the ap-
pearance and location of the body. By referring the motor
commands, which is the current goal of the body configuration,
a frame of a body image can be anticipated in advance of the
action. The procedure of the anticipation is illustrated in Fig. 7.
The predicted location of the motor-correlated object in sight is
given by the motor commands, i.e.,

XP =X (18)
k = argmin d; (19)

J
dj = |lgf, 48] — [a5" s qa” ]| (20)

where X? denotes the predicted location of the motor-
correlated object in sight. (The object is its own body if body
definition is successful.) The notation of [a, b] represents the
concatenated vector of vectors a and b. The anticipated body
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Fig. 7. Body anticipation. (a) Anticipated body image I, 5 before a movement.
(b) Actual image I after the movement. (c) Procedure of body anticipation.

TABLE 1
EXPERIMENTAL CONDITIONS

Notation Type Major condition Minor conditions
Exp.1(a)| Limited Motor patterns Rect., Sin., Random
Exp.1(b)| Limited Joint activation Shoulder, Elbow, List
Exp.2(a)| Standard | Natural movement | No head, Head, Interfered
Exp.2(b)| Standard | Body modification Wrapping, Grasping
Exp.3(a) | Advanced Body attraction {0,25,50,75,100}%
Exp.3(b)| Advanced | Body anticipation Random

image, which is denoted as I”, is generated by projecting the
motor-correlated image I;"* (the body part appearance in the
memory) on the blank frame at the predicted location XP.

IV. EXPERIMENT

We performed experiments on the body definition with the
humanoid robot platform. The conditions of the experiments
are listed in Table I. In the limited condition, the head posture
was fixed, and the arm was moved in low degree of freedom
(DOF). Under the standard condition, the robot moved both the
head and the arm under visual disturbance by arm modification
and human interference. Under the advanced condition, the
obtained visuomotor memory was applied to body attraction
and body anticipation.

A. Limited Condition

The purpose of the experiments in the limited condition
is to validate the robustness of the body definition against
different motor patterns and joint activation. In order to focus
on these basic characteristics, the head posture was fixed in
the experiments. In experiment 1(a), the robot moved a single
shoulder joint ¢, of the left arm in rectangular, sinusoidal, and
random manners. In experiment 1(b), the robot moved a single
joint of shoulder q,g, elbow ¢,3, and list g5 in rectangular
manner. The joint structure is illustrated in Fig. 6. Joint position
Qq; 1s the ith arm joint angle normalized in [—1, 1], where the
upper and lower boundaries correspond to the mechanical lower
and upper limits of the joint angle.

The parameters used in the experiment are listed in Table II.
T., At., and N, denote the reference interval, sampling inter-
val, and the number of intervals for calculation of visuomotor
correlation. The visuomotor correlation is calculated at each
sampling with a sliding reference window of length N At..
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TABLE 1I
EXPERIMENTAL PARAMETERS
Parameter Notation Value
Reference interval Te 1.00 s
Sampling interval Ate 100 ms
Number of intervals N¢ 10

Motor pattern period (head) Th 20.0 s
Motor pattern period (arm) Ta 4.00 s
Command interval Atme 100 ms
Execution interval Atma ~20 ms

These parameters are constrained as T, = N At.. 7 in (12) is
interpreted as T = t — kAt., k= {0,1,---, N. — 1}.

The parameters of the motor patterns are listed in Table II.
Here, the motor pattern means a segment of sequential motor
commands g;. T, T, Atyne, and At,,,. denote the period of the
motor pattern for the head, the period for the arm, the command
interval of the system, and the execution interval of the motor.
T}, was not used in Exp.1 but used in Exp.2 (see Section IV-B).
The execution interval is the theoretical value determined by
the control board of joint motors.

The profiles used when performing continuous rectangle
movements are shown in Fig. 8. According to the desired and
actual position profile, the robot performed rectangle move-
ments in acceptable delay. Although the velocity of the arm
and the moving blob was roughly estimated, it was enough to
detect a high correlation of more than threshold 0.8 between
them. The visuomotor information was memorized only when
the correlation was over the threshold. Note that the appearance
of the moving blob and background in sight were not modeled.
Then, the salient point was influenced by instantaneous changes
of the blob appearances (shape, illumination, and color) and
lighting condition in the scene. However, this influence was
not serious for body detection in the experiment. The visual
modules can be improved by installing more sophisticated
visual processing algorithms [24]. Velocity estimation can also
be improved by involving an interpolation method such as
B-spline approximation [33].

We performed the sinusoidal and random movements in the
same manner as the rectangular movements. The profiles during
the sinusoidal and random movements are shown in Fig. 9.
The sinusoidal movement has a similar profile as the rectan-
gular movement, but the waveform is different. The random
movement gives a rectangular-shaped profile as well, but at
each interval, the desired position was randomly selected from
the normal distribution. The mean ¢ and deviation ¢’ of the
distribution were set as the joint home position and a constant
0.3, respectively.

The evolution of the visuomotor memory in each condition
of Exp. 1(a) and 1(b) is shown in Figs. 10 and 11. Table III
summarizes the results of the body definition with respect to
variations in the motor pattern and actuated joint. Each trial
of the rectangular, sinusoidal, and random movements was
performed until the robot acquired 25 recodes of the visuomotor
memory. In the table, the columns Trial, Average, and Deviation
denote the number of trials and the average and deviation
of the time to finish a trial. The column Body Rate is the
number of the body-part images divided by the number of all
the motor-correlated images (25 images). We defined the body-
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Fig. 8. Profiles of the rectangular movement of the shoulder joint gq0 in
Exp.1(a). The plots from the top to the bottom correspond to the desired joint
position, actual joint position, estimated joint velocity, estimated velocity of a
moving blob, and visuomotor correlation, respectively.

part image as the image that included a part of the robot arm.
The records marked with an asterisk in the table originated
from identical experimental data (rectangular movements of the
shoulder joint).

According to Fig. 10 and Table III, experimental results
positively supported robustness of the body definition against
motor pattern variations. In case of the random motor pattern,
the deviation of the time to finish a trial was larger than the
others. As shown in Fig. 9, the joint positions in the random
movement were mostly varied, and the arm trajectory was not
uniform. Because of this randomness, the evolution patterns
of the visuomotor memory were diverged (Fig. 10 random),
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movement of shoulder joint g,0 in Exp.1(a).
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rectangular motor pattern in Fig. 10.
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Fig. 10. Evolution of the visuomotor memory against motor pattern variation
in Exp.1(a). The plots from the top to bottom correspond to the rectangular,
sinusoidal, and random motor patterns. The unit of axis ¢ is second.

and the deviation became larger than the deterministic cases
(Table III random).

Moreover, we performed the body definition by using differ-
ent joints of the arm. The basic configuration was the same as
the configuration of the rectangular movement, but the elbow
and the list joint, instead of the shoulder, were activated. As
shown in Fig. 11 and Table III, experimental results positively
supported robustness of the body definition with respect to

variations of the activated joint. When the robot moved the list
joint, more hand images were collected than arm images.

B. Standard Condition

The purpose of the experiments under the standard condition
is to validate robustness of the body definition against human
interference and body modification. In Exp.2(a), the robot
moved both the arm and the head in the random manner by
using full joints. First, body definition was performed without
human interference. Then, an experimenter interfered with
the exploration by presenting a moving object manually. In
Exp.2(b), the robot moved both the head and the arm as well,
whereas the arm was physically modified by a plastic glove
or a grasped object. The experimental scenes of the human
interference and the body modification are shown in Fig. 12.

The profiles of the random head and arm movement in
Exp.2(a) are presented in Fig. 13. The DOF of the head and
arm joints for the movements were set as 3 and 6, which
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Fig. 12. Experimental scenes in Exp.2. (a)-(d) Scenes of the full-joint move-
ment, human interference, arm wrapping, and stick grasping, respectively.
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Fig. 13. Profiles of the head—arm random movement by using full joints in
Exp.2(a). The plots of the top and the bottom correspond to the head and arm
joint positions, respectively.

were the highest DOF configuration. The desired head and arm
position were randomly given by the normal distribution in
(11) with the constant deviation o, = o’ = 0.3. The period of
the motor patterns 7}, and 7}, listed in Table IT was used for
motor generation. In this case, the period of the head movement
was five times longer than that of the arm movement. The
visuomotor coordination module neglected the motion saliency
when the head was turning since the visual movement was not
reliable during the change in camera configuration.

A set of motor-correlated images acquired when moving both
the head and arm is presented in Fig. 14. The body rate of the
images is summarized in Table IV. According to Fig. 14(a) and
Table IV, the head movement slightly affected body definition.
The head movements allowed the arm to be out of sight
frequently. When the arm was moving near the outer frame
of the view, the blob perception module failed to capture the
arm. The influence of human interference is shown in Fig. 14(b)
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(b)

Fig. 14. Motor-correlated images obtained during full-joint movements of the
head and the arm in Exp.2(a). The image set of (a) and (b) corresponds to the
condition without and with human interference, respectively.

TABLE IV
BoDY DEFINITION UNDER STANDARD CONDITIONS
Item Trial | Capacity | Average | Deviation | Body rate
Without head 5 100 351.1 138.1 98.2%
With head 5 100 635.2 155.1 96.2%
Interference 5 100 607.8 79.4 79.8%
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Fig. 15. Evolution of the visuomotor memory without head movements,

with head movements, and with head movements under human interference
in Exp.2(a).

and Table I'V. Under this condition, the experimenter frequently
moved a green ball in front of the robot. The set of motor-
correlated images includes the experimenter’s hand and the
presented ball. As compared in Fig. 15, the visuomotor memory
with head movements evolved more slowly than the case of
no head movements; however, the visuomotor exploration was
still successful. The results of the evolution are summarized in
Table IV.

The body rate under the human interference condition was
dependent on the experimenter’s moving manner. Basically, the
experimenter moved the object randomly in the experiment.
When the experimenter mirrored the robot arm movement,
the visuomotor correlation was more influenced. When the
experimenter moved the ball close to the eyes of the robot, the
influence was stronger as well. The interference also influenced
the visually salient location since the current version of the
visual saliency module did not take care of the multiplicity
of the moving regions. This noise can be reduced by ap-
plying a conventional clustering approach such as k-means
clustering [33].

The motor-correlated images were obtained, even when the
arm was physically modified by wrapping with a plastic glove
and grasping a stick. The images are presented in Fig. 16. The
head and arm movements were generated in the same manner as
in the previous case. As shown in the figure, the own body was
defined successfully, even if the arm was modified. Moreover,
the wrapped hand and the grasped stick were defined as the
body parts and the inherent body parts. These results suggest
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Fig. 16. Motor-correlated images obtained during the full-joint movements of
the head and modified arm in Exp.2(b). The image set of (a) and (b) corresponds

to the arm wrapping condition and tool grasping condition, respectively.

that the system has the potential for developmental perception
of the extended body as monkeys do [1], [2].

C. Advanced Condition

The purpose of the experiments under advanced condition is
to exploit the acquired visuomotor memory for body attraction
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Fig. 17. Evolution of the visuomotor memory in Exp.3(a). The plots corre-
spond to each probability of body attraction (0%: no body attraction, 100%:
complete body attraction).

and body anticipation. In Exp.3(a), body attraction was applied
to visuomotor exploration. In (11), we used two sets of para-
meters, i.e., Sy ({(¢},0h) = (¢!, 0.3), (¢&,08) = (¢,0.3)})
and S; ({(Q;m U}iL) = (QZ, 0.3), (qgvgziz) = (gg™,0.1)}). QZ and
q" denote the constant vector of the home position of the
head and the arm joints, respectively. ¢;'* denotes the arm
position associated from the visuomotor memory. S, gives a
global random search of the robot’s own body, whereas S} gives
experience-based local random search aiming at the arm to
move in sight. One of the modes was selected with constant
probability (body attraction rate) in each interval of motor
generation.

The evolution of the visuomotor memory with respect to the
body attraction rate is plotted in Fig. 17. According to the result,
the middle levels of body attraction (25% and 50%) enhanced
body definition more. As the results suggest, experience-based
action bias accelerates sensorimotor exploration. The para-
digm of learning enhancement by learning results may bring
a reasonable speed of motor skill development as infants
demonstrate [34].

In Exp.3(b), we demonstrated body anticipation. In the ad-
vance condition of the experiment, the robot performed body
definition under the condition of Exp.2(a) until it acquired 100
recodes of the visuomotor memory. After this learning, the ro-
bot generated a head and arm motor command and anticipated
the corresponding body image. After the anticipation, the robot
executed this motor command and obtained an actual image.

Examples of the body anticipation are presented in Fig. 18.
The approximate appearance and location of the robot’s own
arm were successfully anticipated. In the experiment, we ob-
tained a few failure anticipations. In order to improve the
reliability, we are designing a voluntary verification system of
the visuomotor memory. The robot can simply reproduce the
configuration of a visuomotor memory and filter memory noise
in the stochastic manner.

V. DISCUSSION

Body definition with head movements is not a trivial prob-
lem, but it was not well considered in the previous studies. Let
us assume a simplified situation of body search, as illustrated
in Fig. 19. In the figure, the head and arm movement are
modeled to direct the view and the hand in two or three discrete
locations. Now, we shall neglect the time to move the body to
a certain location. When the robot moves only the arm or the
head, the probability of the case in which the hand appears in
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Body anticipation in Exp.3(b). The top and bottom images in the
same column present the anticipated body image before the body movement
and the observed image after the body movement (5.0 s later), respectively.

Fig. 18.

arm

(a) move hand (b) move view (c)move both  (d) move both

B BB P
LTI B LRI
HEE NN
NN E N

hand
6#

view ™,

172 1/2

camera

head

Fig. 19. Search problem to get the hand in sight. (a) The hand is moved, and
the view is fixed. (b) The hand is fixed, and the view is moved. (c) Both the
hand and the view are moved. (d) Both the hand and the view are moved, but
half of the location is not completely overlapped. In the illustrations, the gray
box means the case in which the hand appears in sight.

sight after the movement is 1/2. When the robot moves both
the arm and head, the probability is still 1/2, but the variation
of the patterns becomes twice (from two to four patterns). If
the possible locations of the hand and view are not completely
overlapped, the probability lowers to 1/4, and the number of
patterns remains four.

This simulation suggests that movements of both the head
and the arm in the same domain do not decrease the possi-
bility of finding the hand in sight but increase the number of
patterns to search. Moreover, when all of the head and arm
locations are not overlapped spatially, the possibility of finding
the hand in sight decreases. For this reason, body attraction (the
motivation of action toward the motor correlations), which we
demonstrated in the experiment, is considered as an effective
nature to be embedded into the robot.

Another important issue to be discussed is cross-modality in
body perception. Since an appearance of a body part depends
on the body posture and the view point, it is natural to inte-
grate proprioceptive sensing with visual identification of the
robot’s own body. In addition, modality integration with tactile
and force/torque sensing has the potential to improve visually
dominant body definition.

VI. CONCLUSION

We have proposed a developmental approach of body defi-
nition without prior knowledge on kinematics, dynamics, and
body appearances. The visuomotor correlation allows the robot
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to define its own body through sensorimotor exploration. The
robustness of body definition with respect to variation in motor
patterns and actuated joints, body modification, and human
interference has been experimentally proven. Moreover, body
attraction and body anticipation have been demonstrated.

The current body definition system has the potential for
binocular perception, but it is not yet examined experimentally.
Depth sensing should be included to acquire a 3-D model of the
robot’s own body. We have also been motivated to embed the
proposed body definition into learning-based reaching [32].

Another aspect that we should encompass is haptic informa-
tion such as tactile and force/torque sensing. In distinguishing
an extended body from the inherent body, haptic information
plays an important role.
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