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Image-Based Crack Detection for Real Concrete Surfaces
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In this paper, we introduce a novel image-based approach to detect cracks in concrete surfaces. Crack detection is important
for the inspection, diagnosis, and maintenance of concrete structures. However, conventional image-based approaches cannot
achieve precise detection since the image of the concrete surface contains various types of noise due to different causes such
as concrete blebs, stain, insufficient contrast, and shading. In order to detect the cracks with high fidelity, we assume that
they are composed of thin interconnected textures and propose an image-based percolation model that extracts a continuous
texture by referring to the connectivity of brightness and the shape of the percolated region, depending on the length criterion
of the scalable local image processing techniques. Additionally, noise reduction based on the percolation model is proposed.
We evaluated the validity of the proposed technique by using precision recall and receiver operating characteristic (ROC)
analysis by means of some experiments with actual concrete surface images.  2007 Institute of Electrical Engineers of
Japan. Published by John Wiley & Sons, Inc.
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1. Introduction

Visual inspection has become increasingly important in civil
and construction engineering. It is useful for the nondestructive
testing and maintenance of architectural structures. Inspecting
such structures in the early stages of their degradation is
critical to their maintenance, since their damage induces further
degradation under prolonged exposure to severe environments.
The degradation of concrete—a commonly used building
material—is caused by a variety of factors such as earthquakes,
frost damage, salt erosion, rain water, and dry shrinkage. Cracks
on the concrete surface are one of the earliest indications of
degradation. The most popular method for crack inspection
is to manually prepare a detailed sketch of the cracks and
to—simultaneously measure the condition of the concrete.
However, the manual approaches strongly depend on the
specialist’s knowledge and experience and lack objectivity
in the quantitative analysis. Therefore, automatic image-based
crack detection is proposed as an alternative to manually drawn
sketches.

Recently, some methods for crack detection by means of
visual inspection have been proposed [1–3]. Abdel-Qader et al.
suggested a comparison of the effectiveness of crack detection
in the images of a bridge surface by using the wavelet
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transform, Fourier transform, Sobel filter, and Canny filter
[4]. They concluded that the wavelet transform is significantly
more reliable than the other methods. Hutchinson et al. used
a Canny filter and the wavelet transform for crack detection
and estimated the parameters using the receiver operating
characteristic (ROC) analysis [5]. We have also proposed an
automatic visual inspection system using images captured by a
digital camera [6,7]. This system can extract and analyze cracks
on the concrete surface by combining several image processing
techniques including the wavelet transform, shading correction,
and binarization. Kawamura et al. proposed a method using a
genetic algorithm for the semiautomatic optimization of image
processing parameters for precise crack detection [8]. However,
these methods do not consider the essential characteristics of
cracks such as its connectivity. Also, these methods use global
image processing methods such as the wavelet transform by
focusing on the characteristics of the entire image.

On the other hand, some approaches employ local image
processing for crack detection. Local image processing is
necessary to extract such typical local characteristics of cracks
as the direction and connectivity. Roli proposed a method
utilizing conditional texture anisotropy for crack detection in
granite slabs [9]. This method uses the orientation feature in the
local window. Fujita et al. proposed two preprocessing methods
using the subtraction method and the Hessian matrix [10]. Since
the local window is fixed, these methods cannot be flexibly
applied to different widths. Also, Miwa et al. used watershed
segmentation to detect crack lines on a tunnel [11]. However,
this method does not detect cracks with high precision since it
mainly focuses on the watershed for the region of separation.
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The images of real concrete surfaces contain some noises
such as concrete blebs, stains, and shadings in several sizes. The
crack is difficult to distinguish from the image with noises by
the conventional methods which do not use the characteristics
of cracks. Moreover, the methods whose window size is fixed
are inadequate to extract accurate cracks, because the length
and width of cracks are different on real concrete surfaces.
Therefore, the above-mentioned conventional methods tend to
miss cracks while they tend to regard noise as cracks.

In our previous study, we proposed an image processing
technique based on the percolation model, which considers
the relationship with a neighbor for crack detection [12]. This
method is a type of scalable local processing method that
considers the connectivity of brightness among neighboring
pixels. This method was demonstrated to be more accurate than
the conventional methods. However, when the contrast in the
crack region is unclear as cracks, the previous method cannot
accurately detect cracks since it is only based on the brightness
information during the percolation process. It is important in the
inspection to detect cracks without missing them (i.e. accuracy
of crack detection), because inspection is done on the basis of
the detected cracks.

In this study, we describe an appropriate crack detection
method that includes an improved percolation processing
technique based on the shapes and brightness with noise
reduction and binarization. The improved percolation model
can realize robust and highly accurate crack detection by
introducing the circularity of the percolated region as a sort
of shape information. Additionally, the percolation processing
technique uses the length criterion for scalable local processing.
The performance of the proposed method is investigated by
performing precision-recall and ROC analysis using actual
concrete surface images.

In Section 2, we describe the characteristics of cracks and
the procedures in our method. A summary of percolation pro-
cessing is described in Section 3. The proposed crack detec-
tion method including the improved percolation processing and
noise reduction techniques is described in Section 4. Finally, in
Section 5, we show experiments using actual concrete surface
images, following which precision–recall and ROC analysis are
performed to evaluate the proposed method. The conclusions
are provided in Section 6.

2. Overview

2.1. Definition of a crack Figure 1 shows examples
of cracks and noises on a concrete surface. Cracks appear in
the area represented by the dashed line. The noise patterns are
indicated by rectangular areas. In this study, we assume that
the cracks possess the following two characteristics: (i) their
shape is thinner than those of other textural patterns and (ii)
their brightness is lower than that of the background.

Cracks with dark colors are easily detected, while cracks
with unclear colors are difficult to detect since their brightness
is similar to that of the background. Shape information is
extremely effective for detecting the unclear cracks.

2.2. Crack detection procedure We focus on the
two above-mentioned characteristics of cracks. In our previ-
ous percolation model, the central pixel in a local window is

Fig. 1 Cracks and similar noises.
(dashed line: cracked part; black rectangle: noisy part)

Percolation processing using brightness and shape

Noise reduction based on percolation processing

Binarization

Image acquisition

Fig. 2 Flowchart of the crack detection approach

evaluated according to a cluster formed by the percolation pro-
cess using only the brightness criterion, which enables scalable
window processing. In this study, we improve the percolation
model by adding the shape criterion to the percolation pro-
cess and we consider the length of the cracks to represent thin
shapes. In a scalable window processing technique, the length
criterion enables the detection of fine cracks even when the
contrast of the crack region is unclear as cracks. Moreover, in
order to reduce the noise sensitivity, we applied noise reduc-
tion, which is based on the shape of the percolated cluster.
Finally, binarization is applied to the images after noise reduc-
tion. Figure 2 shows the proposed crack detection procedure.

3. Summary of Percolation Processing

Percolation [13,14] is a physical model based on the natural
phenomenon of liquid permeation. This model is effective for
describing various phenomena such as the spread of epidemics,
fires in orchards, ferromagnetism, and disordered electrical
networks.

In our previous study, we employed scalable local processing
based on the percolation model to detect cracks [12]. The
feature of this method is that it evaluates the central pixel
in a local window (i.e. the focal pixel) according to a cluster
formed using the percolation process. In our method, a variety
of percolation processing tasks can be realized by arranging
the cluster classification criterion. Scalable window processing
is represented by changing the termination condition of the
percolation process. For the brightness values, our method uses
256-level grayscale images. We set black to 0 and white to 255
for representation. The percolation process is described below.
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1. At first, the size of the initial window is fixed as N × N

and the maximum window size is defined as M × M . The
pixel located at the center of the local window is set as the
initial pixel ps for percolation and included in the percolated
region Dp. Further, the percolation threshold T is set to the
value of the initial pixel brightness I (ps).

2. The threshold T is updated as follows:

T = max(max
p∈Dp

(I (p)), T ) + w (1)

where w is an acceleration parameter used to accelerate the
percolation.

3. The eight neighboring regions of Dp are defined as the
candidate region Dc. In Dc, the pixels whose brightness is
lower than the threshold T are percolated and included in
Dp . If there are no such pixels, the darkest pixel in Dc is
included in Dp .

4. When Dp reaches the boundary of the N × N window, the
percolation process proceeds to step 5 and N is incremented
to N + 2. Otherwise, the process goes back to step 2.

5. The threshold T is updated in the same manner as in step 2.
6. In the neighboring regions Dc of Dp , the pixels whose

brightness is lower than T are included in Dp . If there are no
such pixels, the percolation process is terminated. Otherwise,
N is incremented to N + 2.

7. If N is larger than the maximum window M , the process is
terminated. Otherwise, the process goes back to step 5.

Conclusively, we obtain the final Dp as the resultant region
of the percolation process, as shown in Fig. 3. Then, we can
evaluate the focal pixel to determine whether it belongs to a
crack by characterizing Dp . We estimate the circularity Fc as
a characteristic of Dp, and it is expressed by the following
equation:

Fc = 4 · Ccount

π · C2
max

(2)

where Ccount is the number of pixels in Dp and Cmax is the
maximum length of Dp . The Fc value ranges from 0 to 1. For
example, the Fc value of the image is close to 1 when the shape
of Dp is nearly circular, as shown in Fig. 3(a). On the other
hand, the Fc value of the image is close to 0 when the shape
of Dp as a crack is linear, and it is completely different from
a circle, as shown in Fig. 3(b).

Consequently, the brightness of the focal pixel in the output
image is associated with the Fc value by setting it to Fc × 255.
Percolation processing is carried out for every pixel in the input
image. We distinguish whether the pixels are included in the
cracks or not by using the value of Fc × 255.

4. Proposed Crack Detection Method

The previous percolation processing is a difficult problem in
detecting the unclear cracks accurately. In the literature [12], we
observed that this algorithm requires improvements to make the
parameter w scalable. When the contrast in the cracked region
is very low (i.e. unclear), this parameter is often too large to
form an accurate crack cluster as the percolation is progressing,
since the previous percolation model depended only on the
brightness. Therefore, in this situation, the circularity becomes

(1) Iteration 1 (2) Iteration 5 (3) Iteration 10 (4) Termination

(a) Background

(1) Iteration 1 (2) Iteration 5 (3) Iteration 10 (4) Termination

(b) Crack

Fig. 3 Examples of the percolation process

(a) Window size (b) Cluster length

N

N

N

N

Fig. 4 Length criterion

close to 1, and then unclear cracks are regarded as backgrounds.
This section describes an improved percolation processing
technique for crack detection. The improved features of the
percolation model are as follows: (i) the parameter w is
modified in the percolation process and (ii) the criterion size
for the percolation process is replaced by the length of the
percolated cluster. Additionally, we introduce a noise reduction
technique for cracks based on the percolation model.

4.1. Improved percolation process The parame-
ter w can be modified according to the percolated cluster. In the
improved process, we use Fc, which is calculated every time
the percolation process executes step 2 described in Section 3.
Fc is calculated by (2) using Dp of the immediate shape at each
iteration. The improved parameter w’ is obtained by using the
following equation:

w′ = Fc · w (3)

Then, Eqn (1) is improved as follows.

T = max(max
p∈Dp

(I (p)), T ) + w′ (1’)

where, when the percolated cluster forms a thin shape (i.e.
Fc approaches 0), the parameter w’ rapidly decreases. When
the percolated cluster forms a circle (i.e. Fc approaches 1),
the parameter w’ is almost constant. Therefore, the improved
percolation processing technique uses (4) instead of (1) in step
2 of Section 3.

A further improvement is that we employ the length of the
percolated region and not the window size. This improvement is
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Set the initial length N, the maximum
length M and parameter w. Further, set the

threshold T using the focal pixel.

Update T using equation (1')

Calculate Cmax of Dp

The neighboring pixel is
percolated using T.

Cmax > N

Increment N → N + 2

The neighboring pixel is percolated

Update T using equation (1')

N > M

The darkest pixel in Dc
is included in Dp.

Calculate Cmax of Dp

Calculate Fc value using equation (2)

No 

YesNo

Yes

No

Yes
No

Yes

Fig. 5 Flowchart of the improved percolation process

simple, since the proposed percolation processing is a scalable
window processing technique. In Fig. 4, the percolated cluster
can be evaluated using the same criterion, even if the initial
points are the front or intermediate points of the cracks.

The improved descriptions are modified as follows: the initial
window size N × N is replaced with length N , the maximum
window size M × M becomes length M , and step 4 described
in Section 3 is modified as follows:

4’. When N is greater than Cmax, the percolation process
proceeds to step 5, and N is incremented to N + 2. Otherwise,
the process goes back to step 2.

Figure 5 shows the flowchart of the improved percolation
processing. The improved parts are represented as the dashed
boxes. The update process of T is improved. To use the length
as criterion of the percolation process, the calculation process
of Cmax is added instead of the window size.

4.2. Verification In this section, we verify the effec-
tiveness of parameter w’ compared with the previous parameter
w. Figure 6 shows the original image and the results obtained
by using the two methods for three types of cracks: ‘dark crack,’
‘background,’ and ‘unclear crack,’ respectively. A dark crack
is noticeably darker than the background. On the other hand, an
unclear crack is brighter than ordinary cracks. The parameters
of the improved percolation processing are set as follows: ini-
tial length N = 21, maximum length M = 41, and parameter
w = 1.

In the dark crack and the background cases, the results reveal
percolated regions having almost comparable shapes. On the

(1) Original (2) Previous (3) Proposed

(a) Dark crack

(1) Original (2) Previous (3) Proposed

(c) Unclear crack

(1) Original (2) Previous (3) Proposed

(b) Background

Fig. 6 Differences in the percolated regions
(×: focal point for percolation; white part: percolated region)

other hand, in the case of an unclear crack, the two methods
yield percolated regions having different shapes. The previous
method expands the shape of the percolated region; however,
the improved method can maintain a percolated region with a
thinner shape. The improved method thus detects unclear cracks
in a manner similar to that for dark cracks. Moreover, Fig. 7(a)
and (b) show the alteration of parameter w’ and threshold value
T in these situations. From Fig. 7(a), the parameter w’ is close
to 0 in the crack case, while the previous parameter w is fixed
as 1. In the background case, the parameter w′ is not close to
0. From Fig. 7(b), the improved method can be verified by the
alteration of T . In the situation of a dark and unclear crack,
T stays almost constant. On the other hands, in the previous
method, T gradually increases in all situations. Therefore, the
unclear cracks are regarded as background.

4.3. Noise reduction In this section, a noise reduc-
tion method based on the percolation model is introduced.
When noise reduction is performed after the binarization, the
resultant noise reduction depends on the threshold value used in
the binarization procedure. Therefore, we apply a noise reduc-
tion method that is based on the percolation model, before the
binarization.

The image produced by the improved percolation processing
is represented by Fc × 255 (i.e. circularity). One of the features
of the cracks is their thin shape. When the focal pixel is
regarded as a crack, the Fc of the neighboring pixels has a
value similar to the Fc of the focal pixel, and these pixels
are interconnected by a ‘constant length.’ Therefore, the noise

131 IEEJ Trans 3: 128–135 (2008)
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(a) Alteration of parameter w′

(b) Alteration of threshold value T
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Fig. 7 The effectiveness of the improved method

(a) Image using Fc × 255 (b) After noise reduction

Fig. 8 Example of the proposed noise reduction technique

reduction method is applied to the images using the Fc

value. In this process, the constant length is then set to N .
Consequently, the resultant value of Fc on the focal pixel after
the noise reduction depends on its connective length among the
neighborhoods.

The improved percolation method can use the length of the
percolated cluster. Then, in the percolation processing, N,M ,
and w are set to N, N , and 0, respectively. Further, the feature
of the noise reduction is extracted as the maximum value of
Fm in the percolated region as follows:

Fm = max
p∈Dp

(I (p)) (4)

Figure 8 shows an example of the results of the noise reduction.
In this example, the parameter N is set to 21.

5. Experiments

5.1. Crack detection We conducted experiments
using images in different actual concrete surfaces in order

(1) Image 1 (2) Image 2

(1) Image 1 (2) Image 2

(1) Image 1 (2) Image 2

(a) Original images

(b) Results of improved percolation and noise reduction

(c) Results of the proposed method 

Fig. 9 Results of the proposed crack detection method

to evaluate the proposed method. In the experiments, our
method is applied to crack detection in 50 images of concrete
surfaces having some noise and unclear cracks. Figure 9(a)
shows examples of the original images used in this experiment.
Image 1 includes many noise spots, and the brightness of the
crack in image 2 is unclear.

The image resolution is 480 × 480 pixels, corresponding to
an area of approximately 240 × 240 mm2 in the actual surface
scale.

First, we applied the improved percolation processing to the
original images, as described in Section 4.1. The parameters
of the percolation processing are configured as follows: initial
length N = 21, maximum length M = 41, and parameter w =
1. These parameters are derived from Ref. 12. In order to
determine the initial length, we performed a statistical analysis
of the crack length in a digital image of the concrete surface by
using our previous measurement system [7]. For the statistical
analysis, we used an image with a resolution of 3040 × 2008
pixels, corresponding to an area of approximately 1.5 × 1.0 m

132 IEEJ Trans 3: 128–135 (2008)
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(1) Image 1 (2) Image 2

(1) Image 1 (2) Image 2

(1) Image 1 (2) Image 2

(a) Previous percolation method(12)

(b) Previous wavelet method(7)

(c) The ground-truth images

Fig. 10 Results of the comparison of images

[2]. Next, we measured 114 cracks and obtained an average
length of 20.4 pixels. The maximum length M is determined
as 41, which is twice the average length. The parameter w was
experimentally determined. Next, we applied noise reduction
based on the percolation model as described in Section 4.3. The
parameter N was set to 21 in the same manner as the previous
percolation processing technique, and the parameter w was set
to 0. Figure 9(b) shows the results of the proposed method after
the noise reduction. Figure 9(c) shows the binarization results
of crack detection with an optimal threshold for the different
images.

For comparison, we employed three approaches: (i) the
previous percolation method [12] using the same parameters
N = 21,M = 41, and w = 1; (ii) the previous wavelet-based
method [7], which used a combination of several image
processing techniques including wavelet transform, shading
correction, and binarization; and (iii) the ground-truth image
created manually by a human observer. Figure 10 shows the
results of these comparison methods.

In Fig. 9, the proposed method can detect fine cracks in both
the noisy and unclear crack cases. In the previous percolation
method [12], the result in the noisy case is comparable with
the proposed result. However, in the concrete surface image
with unclear cracks, the previous percolation method cannot
detect cracks with high accuracy and the connectivity is lost in
the dashed rectangular area in Figs 9(c) and 10. The previous
wavelet-based method [7] includes many background noises
and the cracks are disconnected.

The proposed method detects fine cracks with connectivity,
even if the brightness of the cracks is unclear. This is achieved
by using the shape information of the percolated region in
the expanding process. When images include some noise, the
performance of the proposed method is comparable to the
previous percolation methods.

5.2. Estimation of performance In this section,
we perform an ROC analysis [15,16], which is also used in
Refs 5,10, and a precision-recall analysis [17] to evaluate the
performance of our method. ROC analysis plots the sensitivity
versus (1 − specificity) for each discriminant threshold of a
binary classifier system. The precision-recall analysis is also
similar to the ROC analysis; however, the calculation of the
quantitative evaluation is different. Let G denote the ground-
truth image and H denote the compared image produced by
the crack detection method. The sensitivity, (1 − specificity),
precision, and recall are represented as

Sensitivity = [Crack pixels in H ∩ crack pixels in G]

[Crack pixels in G]
(5)

1 − specificity

= [Crack pixels in H ∩ background pixels in G]

[Background pixels in G]
(6)

Precision = [Crack pixels in H ∩ crack pixels in G]

[Crack pixels in H ]
(7)

Recall = sensitivity (8)

where [·] represents the number of pixels in the argument area
and ∩ represents product set. These values are influenced by the
selection of the threshold value in the binarization procedure.
In the ROC analysis, the ROC curve can represent a reciprocal
relationship by plotting the sensitivity values on the y-axis and
the (1 − specificity) values on the x-axis. The precision—recall
curve is also identified by plotting the precision values on the y-
axis and recall values on the x-axis. We employed these curves
for the quantitative evaluation. Figures 11 and 12 show the
ROC curve and the precision—recall curve of each method.

For the method of evaluation, we used the area Az under
the curve in the ROC analysis. We calculated Az by an
approximation of the trapezoidal integration. Table I shows the
average value of Az and the average precision values in each
method for 50 images. Moreover, as is well known, there is a
trade-off relationship between the precision and recall values.
In concrete surface inspection, detecting noises is preferable to
missing cracks from the view point of fail safety. We calculated
the precision values at different recall values.

In the ROC analysis, the closer the curve is to the upper left
corner, the better is the performance. On the other hand, in the
precision-recall curve, the closer the curve is to the upper right
corner, the better is the performance.
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Table I. Quantitative results

Method Az Precision

Recall : 0.80 Recall : 0.85 Recall : 0.90

Proposed 0.995 0.788 0.753 0.701
Previous [12] 0.959 0.750 0.647 0.529
Wavelet [7] 0.981 0.324 0.265 0.201
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(a) ROC curve in image 1
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(b) ROC curve in image 2

Fig. 11 ROC curves

In Fig. 11(a), the proposed method and the previous percola-
tion method are closer to the upper left corner. In Fig. 11(b), the
closest curve represents the proposed method. In this study, we
focus on the accuracy of crack detection. The improved method
works better in detecting unclear cracks accurately. We calcu-
lated the difference of average brightness between crack pixels
and background pixels. The results of images 1 and image 2
are approximately 52 and 25, respectively. Although image 1
includes some noise, the cracks are relatively clear. Therefore,
the proposed method is comparable to the previous percola-
tion method. On the other hand, the proposed method can yield
better performance even for unclear cracks. In Table I, the Az
value of the proposed method is also high.

In Fig. 12, the results are similar to the ROC curve. The
proposed and the previous methods are closer to the upper right
corner in (a). Moreover, the proposed method is the closest
in (b). Following the precision values in Table I, that of the
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(a) Precision-recall curve in image 1
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(b) Precision-recall curve in image 2

Fig. 12 Precision-recall curves

proposed method is higher than in the other methods, and then
the precision value is realized 70% even when the recall value
is 90%.

Thus, the proposed method has been experimentally proven
to have better performance than the other previous methods in
both the ROC analysis and precision-recall analysis.

6. Conclusions

In this paper, we proposed a crack detection method based on
the percolation model. We improved the previous percolation
model whose process depends on the shape and brightness
in the percolated region. The proposed method is based on
the length criterion and not the window criterion. Further, we
introduced a noise detection technique based on the percolation
model using the length criterion.
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In the experiments, the effectiveness of the proposed method
is investigated using actual concrete surfaces images, and we
applied the ROC analysis and precision-recall analysis. In the
case of the images with unclear cracks, the proposed method
demonstrated the most effective capabilities. In noisy images,
the proposed method exhibited a performance comparable to
the previous percolation method. In the quantitative analysis,
the proposed method had a performance superior to the other
previous methods. Our method scored 70% as the precision
value when the recall value was 90%.

With regard to practical use, methods described in the
literature [6,7] (using the wavelet-based approach) have already
been employed. As our method realizes a higher accuracy than
these methods, we are planning to implement the proposed
method in a crack measurement system to be used in practical
applications.
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